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equality in (8) follows from the fact that ji-l = ZK -k;-b so j = 2K -k, and consequently,
2K 2K"

ff) = ('tl Therefore, i~off) (1-p;-,)ip;1-i [1- ~j 1 =Pee,; (see eq. 4).

The second term (the sum over j) in (8) can be expressed in closed form using the identity

J

E (J) nanxJ-n =Ja(a + xf-l ,
n =0 n

which is proven in Appendix A Applying (9) to (8) results in:

ZKar.l(1-Pi-l) [ Pi_lj2K-l
PC'H" =PCC"- 1--,1 ,I N N

(9)

(10)

Intuitive interpretation of (10) is less obvious than that of (6), but can be developed as follows.

To have a clear hop in SF i, the reference user must randomly select a frequency that satisfies

two conditions:

(a) it is not held over by any of the ji-l overlapping hops that do not get hit in SF (i -1)
and

(b) it does not get hit by any of the k;-l overlapping hops that do get hit in SF i-1.

Letting P(a) and P(b) denote the respective probabilities of satisfying conditions (a) and (b),
then P(ab) =P(b) -P(iib). In other words, the set of frequencies that satisfy both conditions

(a) and (b) is the set of all frequencies that satisfy (b) minus the set of all frequencies that satisfy

(b) but do not satisfy (a). Therefore, the probability that a frequency satisfies both conditions

(a) and (b) is the probability of satisfying (b) minus the probability of satisfying (b) and not

satisfying (a). The probability of choosing a frequency that satisfies condition (b), regardless of

whether or not condition (a) is satisfied, is simply P(b) =(I-Pi_tlN)2K =PCC,i' The desired

probability is thus PCC,i minus P(iib), which is the probability of selecting a frequency that is
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held over and does not get hit. By Bayes' theorem (see [1], p. 38), P (Jib) = P (b Ia)P@). The

probability of selecting a held-over frequency is P@) =2KCii_1(1-Pi_1)/N, since

E Ui-1l = 2K(I-Pi -1) (the expected value of ji-1) and the total number of possible frequencies is
N. Given that a held frequency is selected, the probability that it is not hit is

P(b Ia) = (I-Pi_tlN)2K-1, because if the reference user selects a frequency held by one

overlapping hop, there are 2K -1 remaining overlapping hops that could hit it. Hence, the

probability of selecting a frequency that is not hit but is held, is

P(Jib) = [2KCii-1(1-Pi-d/N]' (l-Pi_tlN)2K-l. Subtracting this from P(b) (the total probability

of selecting a frequency that is not hit) gives (10), which is P(ab), the probability of selecting a

frequency that is neither held nor hit.

Using (6) and (10), it is a simple matter to relate Pi to Pi -1 using

I-Pi = (l-Pi-dPcc,i +Pi-1PCH,i

_ [Pi-1J 2K[ 2KCii -1(1-Pi-1)]- 1--- I-pi-l .
N N-Pi-1

C. Approximation of~

(11)

To complete the model, an expression is needed for Cii. An exact derivation of Cii complicated by

the constraints and dependencies that must be taken into account. The statistics of ri depend on

the value of j;, and on the way in which the j; overlapping "clear" hops are divided between the

beginning and end of the reference user's frame. In addition, the overlapping clear hops at the

beginning of the reference user's frame must, by definition, all use different frequencies, as must

all of the overlapping clear hops at the end of the reference user's frame. Further, clear hops

using the same frequency must not overlap in time, and the frame boundaries of the hoppers

occur at random times with respect to one another. Finally, the statistics of ri will depend not

only onji, but also on ri-1 andji_1 (Le., the system has memory).

Expressions are derived in Appendix B for the mean and variance of ri given that ji =j. This
method accounts for all of the effects mentioned above except for the system memory. The

results in Appendix B suggest that given j;-1, the standard deviation of ri is less than 3% of the

mean, and also that ri is relatively insensitive to imbalances in the distribution of the j; clear
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hops between the beginning and the end of the references user's frame. Hence, ri can be
reasonably modeled as a deterministic function of ji, suggesting that a closed-form expression
might be developed for ri.

To do so, assume that at the beginning of the reference user's frame there are j /2 other hoppers
with clear frequencies, and at the end of the reference user's frame there also are j /2 other
hoppers with clear frequencies. Hence, there are j /2 "starting frequencies" and j /2 "ending
frequencies." Some of the ending frequencies can be the same as some of the starting
frequencies without causing a collision. The objective here is to find what fraction, on average,
of the starting frequencies are re-used as ending frequencies.

Let the random variable th represent the fraction of the arbitrary interval that elapses before a
unit hops onto a given ending frequency. Assuming th is uniformly distributed between 0 and 1,
then if th takes on a particular value tn for the nth ending frequency, the nth ending frequency
can (on average) be the same as tnj /2 of the starting frequencies without a collision. Since the
nth ending frequency must be different from the other j /2 - 1 ending frequencies, it can be one
of N - j /2 + 1 frequencies. Therefore, given tn, the probability that the nth ending frequency is
the same as some starting frequency is

(12)

Averaging over all possible values of th gives the fraction of ending frequencies that, on the
average, are "reused" starting frequencies as:

1

'/2 J 1 '/2f, - J - tdt - - _...LJ..L.._=---_
r N - j /2 + 1 - 2 N - j /2 + 1 .

o
(13)

It is clear that ji/2 = K(1-Pi)' Replacing j /2 with K(1-Pi), €Xi is then approximated as:
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fr 1 K(I-pi)
a; == 1- -2 = 1- 4" -N---K-(I-.p-i-)-+-1
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(14)

As discussed in Appendix B, this formula gives a result remarkably consistent with the more
rigorous analysis. Even closer agreement can be achieved by "tuning" the approximation slightly

to be:

1 K(l-pi)
a; ==1-- .

4 N -O.9K(1-pi)
(15)

This formula will be referred to as the "tuned" approximation, and will be used in the
calculations that follow. On the graph shown in Fig. 8, this tuned approximation is virtually
indistinguishable from the computation of Appendix B.

D. Model Summary

The result of the above development is the recursive relationship

[
Pi-1J2K[ 2Ka;-1(1-Pi-1)]Pi = 1- 1--
N
- 1-Pi-1--

N
---=---=-,
-Pi -1

(16)

wherePi is the probability that a given user gets hit on a given hop in the ith superframe, K is the
number of "interfering" units operating in addition to the reference user, N is the number of
available frequencies, and a; -1 is approximated as a function of Pi -1 by (15). Using (16), the
probability of a hit can be computed for successive superframes, and as discussed below, some
insights into capacity limits can be gained. Clearly, if all units are hop-synchronized, (16) is
modified by removing a; and replacing 2K with K.

E. Capacity Implications

Of particular interest is the number of units that can be accommodated by a given number of
frequencies with an expectation of eliminating collisions within a relatively short time. This
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requires thatPi « 1. If that is the case, (16) can be approximated by:

2Kpi-1
Pi ::::: (1 + 0;-1) N

- 12-

(17)

Clearly, for Pi to continually decrease with increasing i, it is necessary that K < N /(2 + 20;). If
this condition is met, the hit probability Pi never becomes zero, but becomes arbitrarily small
with increasing i (in an actual system, random walk effects would drive the system to a collision
free state). Hence, the "capacity" can be expressed as:

N
Kc ~ 2 + 20:

1 Kc
a = 1-"4 N - 0.9Kc

(18)

(19)

Substituting (19) into (18) and solving the resulting quadratic for Kc yields Kc =N /3.8 and
a =0.91. For N = 173 channels (corresponding to channels 150 kHz wide), Kc =45 (so
Kc + 1 = 46 units total). With synchronized hopping, Kc = N /2, so Kc + 1 = 87 units for
N =173.

IfK > Kc, thenpi will not asymptotically approach zero but instead will have some steady-state
non-zero value. This steady-state hit probability, denoted here by Pss, can be found by
substitutingpss for Pi andpi-l in (16) and solving numerically. As shown in table 1, doing so
gives non-zero values of Pss for K > 45, indicating that the hit probability does not approach
zero but rather reaches some lower limit and then remains constant regardless of how many
superframes pass. Actually, as will be seen in the next section, K can be slightly greater thanKc,
and a no-collision state can still be reached in a moderate number (e.g., several hundred)
superframes.
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TABLE 1. Steady-State Collision Probability for Frequency-Hopped Cordless

Telephones with N = 173.

K Pss

46 0.0210
47 0.0456
48 0.0691
49 0.0917
50 0.1134
51 0.1342
52 0.1542

53 0.1734
54 0.1920

55 0.2099

60 0.2903
65 0.3583
70 0.4166
75 0.4672
80 0.5114
85 0.5504
90 0.5850

lli. SIMULATION RESULTS AND RANDOM WALK EFFECTS

A. Summary ofSimulation Results

A computer simulation was developed for comparison with the analytic results discussed above.
Consistent with the requirements of the FCC Rules, the simulation included the constraint that
no frequency can be used more than once in a hopper's sequence, which in the examples
discussed here was assumed to consist of 50 frequencies.

Fig. 1 compares the convergence trajectory predicted by the model (eq. 16) to that observed on
a sample run of the simulation, for 40 hoppers (K =39). It also was assumed that a frequency
replacement is triggered by a collision on a single hop. Obviously, if multiple repeated collisions
are required to trigger a replacement, the convergence time would be correspondingly
lengthened.
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Although it appears from the example in Fig. 1 that agreement between the model and the

simulation of the collision trajectory is excellent for K < Kc, it was found that the simulation
could in fact reach a no-collision state with K larger than Kc (but not very much larger). For

example, Fig. 2 shows the average number of collisions per superframe per hopper for 50

hoppers (K = 49). As can be seen, a collision-free state is reached in slightly over 300

superframes, although the model predicts a steady-state value of about 4.6 collisions per

superframe per hopper, per table 1. It was found from experimentation that the highest number

of users for which the simulation reached a no-collision condition within 1000 superframes was

51 (K = 50). Fig. 3 shows the simulation results (number of collisions vs. superframe) for this

case, for two different simulation sample runs (the random number generator was seeded with

two different values). For the first run, a collision-free state was reached after less than 350
superframes, while for the second run, collisions were still occurring at 500 superframes. For

both runs, the collision rate was significantly below the level predicted by the model (5.67

collisions per superframe per hopper).

Figs. 4 shows simulation and analysis results for 60 hoppers. Note that for this case, the number

of collisions fluctuates reasonably tightly about an average slightly below that predicted by the
model.

Fig. 5 shows Pss and the corresponding value of 0: (labelled o:ss) as functions of K for both the

model and the simulation. The value of Pss predicted by the model seems to upper-bound that

observed in the simulation, and the bound becomes increasingly tight as K increases. The value

of O:ss predicted by the model seems to have a relatively constant offset from that extracted from

the simulation. This probably is because the model for 0:; does not account for system memory.

However, the effect is very small, and clearly an empirical adjustment for 0:; could be

incorporated into the model if desired. An additional difference between the mathematical

model and the simulation is that while the model considers only successive iterations of a single

isolated frame, the simulation inherently includes the effects of dependencies among frames

(due to overlap, and the constraint that no hopper can use a given frequency more than once).

Fig. 6 shows simulation and model results for 80 hoppers (K =79) with synchronized hopping

(the "capacity" in this case is 87 hoppers). As with the results for unsynchronized hopping, a

collision-free state is eventually reached in the synchronized case for a number of hoppers

slightly greater than the capacity (e.g., 100 hoppers). For larger numbers of hoppers (e.g., 120),

the number of collisions per superframe fluctuates fairly tightly about an average slightly below

that predicted by the model.

While the simulation results agree with the model in many respects, the simulation indicates that

a collision-free state can in fact be reached with values of K for which Pss is low but non-zero.
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These results initially seemed to contradict the analysis of steady-state collision probability
presented above, but further development of the analytic model as given below suggests a
mechanism for this behavior.

B. The System Viewed as a Markov Chain

The group of frequency-hoppers can be viewed as a system which at any given time is in one of a
finite number of discrete states. The state of the system could be defined in various ways. For
example, the system state at iteration (superframe) i could be defined as the number of
collisions that take place during that iteration. For each state, there is an associated probability
that the system is in that state. The state probabilities after i iterations can be expressed as a
vector p(i) , the elements of which correspond to the state probabilities; e.g.,
p(i) = [pg) pf)... pJj], where pg) represents the probability that the system is in state 0 (e.g.,

no collisions) after i iterations,pf) corresponds to the probability of 1 collision, etc. (although in
the particular problem considered here, the probability of exactly 1 collision is always zero).
Hence, the elements of p(i) comprise the state probability distribution after i iterations.

If, after i iterations, the system is in some state m, then there is some probability that after the
next iteration, it will be in some other state n. This probability is denoted by Pmn and is usually
called a state transition probability (in this case, the transition probability from m to n). If the
system has M possible states, the set of transition probabilities can be represented as an MxM

matrix P, the elements of which are the transition probabilities; that is, P(m,n) =Pmn. If a
system can take on a finite number of states, and the state of system after iteration i depends
only on its state after iteration i-I, then the system can be modeled as a finite Markov chain.
Further, if the matrix of transition probabilities is time-invariant the chain is called
homogeneous.3 Both of these conditions hold for the problem of interest here.

Under these conditions, p(i), the vector of state probabilities after i iterations, is simply:

(20)

3. For a concise summary on Markov chains and graphs, see Appendix 6 of [2]. The discussion of
Markov chains given here is extracted from that material.
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where p(O) is the initial state distribution, and pi is simply the state transition matrix P raised to

the ith power. Thus, if the state transition probabilities and the initial distribution are known,
then the distribution after any iteration can be computed.

Viewing the behavior of the group of frequency-hoppers as a Markov chain, the probability that
there are no collisions after i iterations is p(i)[O] (Le., the zero-th element of the ith iteration of
the state probability vector p(i». It should be noted that in general p(i)[O] will increase with
increasing i, because the system can always go to a no-collision state from other states (although
the probabilities may be very small), but cannot go from a no-collision state to any other state,
as the problem has been defined here. This observation suggests that, for a given N and K, as i
increases, it becomes increasingly likely that a no-collision state will be reached, although ifK is
much larger than Kc, the growth of p(i)[O] may be so slow that an extremely large number of
iterations would be required to obtain reasonable probabilities of reaching a no-collision state.

C. Analysis ofState Transition Statistics

For K =50 andN =173 channels, applying (16) withpss =Pi ::: Pi-1 gives a steady-state collision
probability of about 11% (see table 1), but the simulation indicated that a no-collision state
could eventually be reached under these conditions (51 hoppers and 173 channels). This
subsection explores that apparent contradiction.

For consistency with the earlier model development, the "system" will be considered a single
timeslot (hop number) in the superframe as seen by the reference user, and the state of the
system will be defined as the number of overlapping hops that did not experience collisions on
iteration i-I (represented by the random variable jj-1 in the model). Of interest are the system
state statistics after iteration i, given that after iteration i -1 the system is in state j (that is, given

that ji-1 =j).

In general, we would like to know the transition probability P{ji =J I1-1 =j}. One way to find
this conditional distribution is to recognize that overlapping hops that are clear after iteration i
can be categorized as: (1) those that were clear in SF i-I and stayed clear, and (2) those that
were hit in SF i -1 and became clear in SF i. The distribution for the number that were clear and
stayed clear is:

P{ncc =m I ji-1 =j} = (~)~c(1_pccy-m , (21)



FREQUENCY HOPPING CORDLESS COLLISION ANALYSIS

and the distribution for the number that were hit and became clear is:
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(22)

where k = 2K - j and Pee and PeH are understood to be conditioned on ji-1 = j. Thus,
Pee = (I-liNt and PeH = Pee(1-aj IN), where a is given as a function of j by the "tuned"

approximation of (15), with j 12 substituted for K(l-pi)'

Clearly, ji = Bee + nHe. For purposes of this discussion, Dec and DHe will be treated as
independent, so the pdf of J (given ji-1) can be modeled as the discrete convolution of the pdfs

of Dec and DHe:

j

P{ji =J I ji-1 =j} = ~ P{nee =m I J-1 = j}P{DHe =J -m 11-1 = j}
m =1

j

= m~J~)P'Ce(1-Peey-m(J~)P~1f(l-PeHt-(J-m). (23)

Unfortunately, this expression does not appear to be very useful for gaining immediate insights

into system dynamics. However, the mean and variance of j; given jj-1 are easily found from

(21) and (22) as:

11j ~ELii Iji-l =j) = E[Dee Iji-l =j) + E[DHe Iji-l =j)

= jPee + kPCH , (24)
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and

CTJ ~ VARfjj Ijj-l =j] = VAR[ncc Ijj-l =j] + VAR[nHC Ijj-l =j]
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(25)

The terms flj and CTj are easily evaluated and can provide useful insights into system behavior.
For example, Table 2 shows flj and CTj for three cases: K =48, K =52, and K =55. Note that in
Table 2, flj > j for j = 80 and j = 85, and fli < j for j > 90. In fact, for a given K there is a
"steady-state" value of j for which nj = j. This steady-state value is given by:

jss = 2K(1-pss)· (26)

Table 3 shows jss for K in the range of interest, and Fig. 7 shows hs and asshs (which
represents the number of held-over frequencies) as functions of K for the model and the
simulation.

D. Discussion ofSystem Dynamics

From Table 2 a qualitative understanding of system dynamics can be gained. A collision-free
state is achieved when j reaches its maximum value of j max =2K. As shown in Table 3, the
statistically "preferred" value of j Uss) is very near 90 for K not much larger than the "capacity"
value Kc found in the previous section (which is about 45 for N = 173). To attain a no-collision
state, the system must complete a random walk between hs and j max =2K.

Note that for j > hs, flj < j, and for j < jss, fli > j. This means that the transition statistics tend
to pull the system state to its expected, or steady-state value, but it is clear from the examples in
Table 2 that this bias toward the equilibrium state is not very strong. If, after iteration i -1, the
system is in state j; -il the distribution of jj is nearly centered on j; -il so the state of the system
can randomly ''walk'' among different values with a relatively small bias in favor of the
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TABLE 2. Expected value and standard deviation of next state given current state U),
for N =173 frequencies.

K=48 K=52 K=55
j

'7j u· '7j u· '7j u·
J J J

80 81.24 3.23 81.54 3.88 81.63 4.27

85 85.40 2.77 85.45 3.56 85.37 4.02

90 89.96 2.11 89.75 3.16 89.48 3.71

91 90.92 1.94 90.65 3.06 90.35 3.64

92 91.90 1.75 91.58 2.96 91.23 3.56

93 92.90 1.53 92.52 2.85 92.13 3.48

94 93.92 1.25 93.48 2.74 93.04 3.40

95 94.95 0.89 94.45 2.61 93.98 3.31

96 96.00 0.00 95.44 2.48 94.92 3.22

97 96.45 2.33 95.89 3.12

98 97.47 2.17 96.87 3.02

99 98.52 2.00 97.87 2.91

100 99.58 1.80 98.88 2.79

101 100.66 1.57 99.91 2.66

102 101.76 1.29 100.96 2.53

103 102.87 0.92 102.03 2.38

104 104.00 0.00 103.11 2.22

105 104.22 2.04

106 105.34 1.83

107 106.48 1.60

108 107.63 1.31

109 108.81 0.93

110 110.00 0.00

equilibrium state. Note, however, that as the state (j) approaches its maximum value of 2K., the

standard deviation Uj shrinks, indicating that state changes become more and more limited to

near neighbors. Because of this, if the system "jumps" to a large value of j, it will tend to stay

near that value rather than return to the value from which it jumped. This "ratcheting" effect

was observed in the simulation for values of K near the "borderline" value of 50; this would
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TABLE 3. Equilibrium value of j Uss).

K lss

46 90.21
47 89.85
48 89.50
49 89.14
50 88.79
51 88.43
52 88.09
53 87.74
54 87.38
55 87.03
56 86.68
57 86.32
58 85.97
59 85.62
60 85.27
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seem to account for the low values ofPss (relative to those predicted by the model) observed in
the simulation for K near 50. Also note that as j approaches j max = 2K, the bias toward the
equilibrium state hs actually diminishes, so once the system state reaches this region, it has a
reasonable chance of reaching the collision-free state. This effect was also observed in the
simulation.

As K becomes larger, it becomes increasingly difficult for the system to ''walk'' across the
middle ground between hs and values of j near j max' This is because (1) the middle ground
expands by two steps each time K increases by 1, (2) the decreases in Uj with increasing j
become slower, which weakens the ratcheting effect, and (3) the bias toward jss becomes
greater. These effects can be seen clearly by comparing the three cases shown in Table 2. In
combination, they greatly decrease the likelihood that the system will walk from jss to j max in a
given number of iterations.

The time required for the system to converge is of course a random variable, but intuitively, its
expected value should increase significantly as K increases. Correspondingly, the probability
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that the system achieves a no-collision state within a given number of iterations will decrease as
K increases. Thus, were the simulation to run for a long enough time, we might expect a no
collision state to eventually be reached for K =51, K =52, and so on, but the probability that the
system achieves a collision-free state in a reasonable number of iterations would soon become
vanishingly small.4

IV. THE EFFECT OF WIDEBAND FORWARD LINKS

A. Extending the Model

The model developed here can be extended in a straightforward manner to account for the
effect of interference from a wideband forward link (WFL) associated with AVM/LMS
(Automatic Vehicle Monitoring/Location and Monitoring Services) systems. Consistent with
the development up to this point, it will be assumed that the forward link transmitter is
sufficiently close to the cordless telephone to cause interference, and issues of timing,
adaptation, and collision probabilities will be analyzed.

Several new parameters need to be introduced to account for the bandwidth and timing of the
forward link transmissions. If the forward link has a transmission bandwidth of BFL and the
total bandwidth is Bror, then the fraction of frequency-hopping channels unaffected by the
forward link is {3~ 1-BFL / Bror. The forward link is assumed to transmit short bursts at
random intervals, with some known average burst rate. The frequency hopper is assumed to use
some specific bits in its frame to check for a "collision." If any of those bits (or some specified
number of them) are corrupted, then the hopper assumes that a collision has occurred and
replaces the frequency. It also mutes the frame, to avoid subjecting the user to the corrupted
speech cadec output. Given the frame structure and the duration of this bit sequence as a
fraction of the frame duration, as well as the burst length and the average burst rate for the
AVM/LMS forward link, there is some probability l/ that the forward link does not transmit

4. Without further analysis, definitive statements cannot be made about the relationship between K
and the statistics of the convergence time. The problem of interest here is more complex that the
classical "coin toss" random walk problem (see p. 290 of [1]), in which the system state (the net dis
tance walked) is the number of "heads" minus the number of "tails." In that case, the system must
change state at each iteration (each coin toss), and will "walk" exactly 1 step in one direction or the
other. In the problem considered here, the system can transition to one of multiple states, or can
remain in the same state. In addition, the transition statistics depend on the state. As a possible
area for further work, exploration of the relationship between K and the convergence-time statistics
may be of some interest. However, it may prove to be a difficult problem, and the results given
here suggest quite clearly the practical limits on K.
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during the transmission of the "control" bits in a particular frame, and therefore does not trigger
a frequency replacement. Finally, since the WFL transmissions often will not coincide with the
control bits, there will be "hits" on the speech bits that are undetected. Consequently, the
cordless telephone will not mute the affected frame, nor will a frequency replacement be

triggered. These undetected hits can have a significant impact on the link quality perceived by
the user. The average number of WFL transmissions per hop during speech bits of frames for

which WFL transmissions do not coincide with control bits will be denoted bye.

For notational convenience, let

[
Pi_1]2KA·/l 1--

I = N (27)

(28)

In terms of the base case (no wideband forward links), PCC,i =Ai, PCH,i =Ai(l-Ci ), and
Pi = 1-Ai (1-Pi -1 C;). As before, (27) and (28) apply for the unsynchronized case; when all
hoppers are synchronized, a would be removed and 2K would be replaced with K.

There is some probability f3i that a given frequency of a particular hopper does not fall within the
transmission band of the wideband forward link on the ith SF. For the first SF, this probability is
simply f31 =1-BpL/BTOT' as noted above. As time progresses, it is reasonable to expect that f3i

will increase, as the hoppers attempt to migrate away from the forward link. As also noted
above, the wideband forward link transmits a burst during the control bits of a particular hopper
with probability 1-v. This probability will not change with time. Given v and f3i, the probability
that the wideband forward link does not hit the control bits of a particular hopper is

It then follows that

Gi ~ f3i + v(1- f3i) = V + f3i (I-v) . (29)
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pcc· =A·G·,/ / /

and

PCH,i =AiG;(l-C;).

As before, qi = 1-Pi =qi-1PCC,i +Pi-IPCH,i, giving

qi = l-Pi =AiG;(l-p;_l C;),

- 23-

(30)

(31)

(32)

Clearly, a recursive expression is also needed for Pi. If a hopper is outside of the WFL band, it
can be hit by another hopper, but not by the WFL If it is hit by a hopper, it will select another
frequency that is outside the WFL band with probability Pl' If the hopper is within the WFL
band, it can be hit by either a hopper or the WFL, and if it is hit, the probability that the

replacement frequency is outside the WFL band is again Pl' Therefore, the probability that a
given hop frequency is outside the WFL band in SF i is:

(33)

whereph,i is the probability of being hit by another hopper in SF i and qh,i = l-Ph,i, and is given
by:

(34)
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The average number of undetected WFL hits per hop is €(1- f3i ). Accounting for the possibility

that another hopper can also hit a frame and cause a mute, the net average number of

undetected hits per hop (Le., hits on the speech bits without a collision with another hopper or a

hit on the control bits from the WFL) is:

(35)

Note that by the definition of (35), if a frame suffers a detected collision from another hopper or

the WFL (a hit on the control bits), any other hits from the WFL during the frame are not

counted as "undetected" hits, because the detected collision will cause a frame mute.

Given (27)-(35), Pi, Ph,i, Pi, and nudh,i can be computed recursively for successive superframes.

For the first superframe, qh, 1 = (1- 2/Nf, and q 1 = qh, 1G 1·

B. Results

Before numerical results can be obtained, the parameters v and € must be specified. They will
depend on the frame structure of the hopper and the transmission timing of the WFL. It will be

assumed that the WFL transmission timing structure is as follows. Each WFL "slot" is 640 JJS in

duration. During the slot, the base transmits for 200 JJS and then waits for a response from the

mobile. On average, a given base is assumed to use 3% of the slots (so the overall transmit duty

cycle of a given base is 1% on average). Slot usage by a particular base is assumed to occur at

random times, so for 3% average usage per base, the probability that any particular slot is not

used by a given base is 0.97. The frame of the cordless telephone is assumed to be 5

milliseconds in duration. Therefore, the cordless telephone frame spans 5 -;- 0.64 = 7.8 WFL

slots, so it overlaps 8 slots. Assuming that the WFL base transmits with the average duty factor,

the probability that none of the slots overlapping a given cordless telephone frame are used by

the WFL base is Po =0.978 =0.784. The probability of exactly n hits from the WFL during a

frame is Pn = CS,n 0.978-11 O.03n
• Thus, P 1 = 0.194, P2 = 0.021, and P 3 = 0.0013. Since

3

1- E Pn =5.1xlO-5, it is clear that the probability of 4 or more hits is sufficiently small to be
n =0

neglected for purposes of this analysis. The "expected" (average) number of hits per frame is

7.8 x 0.03 = 0.23. To calculate v, it will be assumed that there are two blocks of control bits (one

for the handset-ta-base link and one for the base-to-handset link). The probability that the WFL

does not transmit during either block is v =0.972 =0.94. Therefore, there will be WFL
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transmissions during at least one of the control fields on 6% of the frames, on average, and

e=0.23-0.06 =0.17.

Fig. 9 shows analytic and simulation results for 40 hoppers, assuming a WFL bandwidth of
BFL = 16 MHz and a total bandwidth of Bror = 26 MHz. Also shown for comparison is the case
of Fig. 1, with no WFL interference. The "detected collisions" are those from the WFL as well
as other hoppers. The "undetected hits" are from the WFL, and f3 shows the fraction of the
hopping frequencies outside the WFL band. Note that as in the base case, the simulation results
are on average slightly "better" than the analytic results (fewer collisions, fewer undetected hits,
and slightly higher (3). As in the base case, it appears that a "random walk" mechanism is at
work, and the disparity is even more pronounced as the number of hoppers decreases. For
example, Fig. 10 shows results for 25 hoppers.

C. Multi-Collision Frequency Replacement Triggering

In the cases shown in Figs. 9 and 10, it was assumed that a single hit on the control bits triggered
a frequency replacement. While this approach minimizes the time required to react to
interference, it tends to make the system react too quickly to transient problems such as might
be caused by a momentary deep multipath fade. A better general approach for stability is to
introduce some "damping" into the adaptation process by requiring collisions on a given
frequency over a number of superframes to trigger a frequency replacement. For a group of
hoppers operating at the same hopping rate, or a fixed interference source, the interference will
occur on every superframe and therefore will cause the affected frequency to be replaced.

For WFL interference, this is not the case, since the probability that the cordless telephone will
receive multiple successive hits from the WFL on the control bits is relatively low. To account
for a multiple-collision requirement for a frequency replacement, the model must be further
modified. It will be assumed that m sequential collisions are required to trigger a frequency
replacement. The superframes will be treated in m-superframe blocks, because hoppers must
collide for m superframes before a frequency can be replaced. This approach allows the
problem to be solved with minor modifications to the existing model. Specifically, it is the
probability of a frequency replacement, rather than simply a collision, that is the key element of
the recursion formula, although the collision probability is still of interest. Denoting by 'i the
probability of a frequency replacement on a given hop in SF i, two new parameters are defined
as:
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(36)

(37)

The probability that a given hop is clear in SF i given that there was no frequency replacement
on that hop in SF i -m is

PCNR j =BiGi ·, (38)

The probability that a given hop is clear in SF i given that there was a frequency replacement in
SFi-mis

PCR' =B·G·(I-D·),I I I I'

From (38) and (39) the probability of "no collision" is

(39)

qi = I-pj = (l- ri-m)PCNR,i +ri-mPCR,i = BiGi(l-ri-mDi)' (40)

Note thatqh,i =Bj(l- ri-m Dj) soqi =Gjqh,j as before.

Let Uj ~ 1- rj be the probability that there is no frequency replacement in the ith superframe.
For a frequency replacement to occur, the control field needs to experience m sequential
collisions. The probability that the WFL does not transmit during one of the control fields of a
given hopper is 1/. For m =2 and m =3, the probability that the WFL does not transmit during
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the control bits on a particular hop m superframes in a row can be approximated (for 1-v « 1)5

by:

X::: I-m(l-v)m.

For example, for v = 0.94 and m = 2, X =0.993.

Defining

f j = f3j + x(1- f3i) ,

the probability that there is not a frequency replacement is

u· = 1-,· = qh ·f·I 1 ,I I'

The expression for f3i becomes:

(41)

(42)

(43)

(44)

Using (38)-(44), Pi, 'j, and f3i can be computed recursively. The initial conditions are

qh,l =(1-2/N)K,ql =qh,lG l, andu l =qh,lfl'

5. The exact expressions can be derived in a straightforward manner using combinatorial techniques.
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For comparison with Fig. 10, Fig. 11 shows simulation and model results for 25 unsynchronized

hoppers if two sequential collisions are required to trigger a frequency replacement. Note that

agreement between the model (eqs. 36-44) and the simulation is much better than in the single

collision case, suggesting that the two-collision requirement has reduced the random-walk

effects.

The numerical results have been limited up to this point to a relatively large number of hoppers

(25 or more), unsynchronized hopping, and a forward link bandwidth of 16 MHz. The effects of

a reduced number of hoppers, a smaller forward link bandwidth, and hop-synchronization also

are of interest. Fig. 12 shows model and simulation results for 6 hoppers with BFL =16 MHz,

two-hit frequency replacement triggering, and unsynchronized hopping. Fig. 13 shows the same

case except BFL =8 MHz. Fig. 14 shows the same case as Fig. 13, except the hoppers are

synchronized. The "synchronized" case typifies some business environments, in which the

cordless base units are colocated in a single housing and frame-synchronized. As is clear from

the model development and from comparison of Figs. 1-4 with Fig. 6, without the WFL,

performance is better in the synchronized case than the unsynchronized case. However,

comparison of Figs. 13 and 14 suggests that in the synchronized case, the hoppers suffer

somewhat more from the WFL if they are synchronized. Movement out of the WFL band is

somewhat slower, and the variations in both detected collisions and undetected hits are higber.

These pbenomena are due to the fact that in the synchronized case, a control field hit occurs

simultaneously for all boppers within the WFL band, which is not the case with unsynchronized

hoppers. Thus, in the synchronized case, there is a tendency for multiple hoppers to replace

frequencies at tbe same time, generating more collisions among hoppers. Further, undetected

hits will be more highly correlated among hoppers in the synchronized case, accounting for the

larger variation in the number of undetected hits about its average value.

v. CONCLUSIONS

The analysis presented here provides a model for the performance of multiple frequency

hopping devices operating in close proximity. It was assumed that each unit independently

selects its hopping sequence randomly and adapts to collisions by replacing frequencies on whicb

collisions occur with new randomly selected frequencies. Agreement between the mathematical

model and the simulation results was found to be remarkably close, considering that the model

analyzes only a single isolated frame, and does not account for interaction among bops, nor for

tbe constraint that a hopper can use a given frequency only once in its sequence.

While this analysis did not account for such "real-world" effects as propagation patb loss, it

provides useful insights into the dynamics of such a situation. The model sbows that witbout

bop-synchronization (units do not cbange frequencies at the same time), the number of units
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that can simultaneously share a total of N frequencies and converge to a no-collision state using
a collision sense/dynamic frequency replacement (CS/DFR) discipline is about N /3.8. The
simulation results suggest that with values of K slightly larger than this, a collision-free state
eventually can be reached due to random-walk effects. However, for values of K significantly
larger than N /3.8, the simulation does not converge to a collision-free state. If the units are
hop-synchronized, as will be the case in some business applications, the "capacity" is N /2 rather
thanN/3.8.

The model was extended to account for the effect of interference from an AVM/LMS wideband
forward link (WFL). It was found that the WFL interference significantly degrades the
performance of the hoppers, resulting in undetected, unmuted "hits" to the audio signal and
preventing even a small number of hoppers (e.g., 6) from reaching a collision-free state in a
reasonable amount of time.
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APPENDIX A

This appendix proves the identity:

1

~ (J)na nx1-n =Ja(a +Xf-1,
n =0 n

which is used to derive the closed-form expression for Pee,i given in eq. (10).

Letting {3~ aIx and noting that

(J) = £(J -1) ,
n n n-l

the left-hand side of (A-I) becomes:

1 1 1

~ (J)na nx1 -n =xl ~ (J)nrr = xlJ~ (J -1) rr
n =0 n n =1 n n =1 n - 1

1 1-1

=xlJ{3~ (J-l)rr-1 =xlJ{3~ (J-l)rr
n=l n-l n=O n

Thus, (A-I) is proven.
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(A-I)

(A-2)

(A-3)
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In this appendix, expressions are derived for the mean and variance of r, which represents the

number of distinct frequencies used on overlapping clear hops as a fraction of the total number

of overlapping clear hops (see eq. 7).

Assume that two groups of frequencies are randomly chosen from the same alphabet of N

frequencies. The first group consists of M distinct frequencies, and the second of L distinct
frequencies. Ignoring for the moment the issue of time overlap, it is of interest to determine the

probability that the two sets have exactly n frequencies in common. This can be done as follows.

The number of combinations of n frequencies belonging to the first set is simply

CM,n ~ n!(~~n)! ' which denotes the number of combinations ofM items taken n at a time ("M

choose nil). Similarly, there are CN-M,L-n combinations of L-n frequencies not belonging to the

first set. Since there are CN,L total combinations of L frequencies chosen from the alphabet of
N, the probability of choosing a set of L distinct frequencies that has exactly n frequencies in

common with the first set of M frequencies is CM,nCN-M,L-njCN,L.

Given that the two sets have exactly n frequencies in common, and hop times are random and

uniformly distributed, the probability that none of the n common frequencies overlap in time is

2-n. Hence, the probability that the two sets have n frequencies in common, none of which
overlap in time, is

2-nCM nCN-ML-n
Pn = MIN{M,L} ' ,

E 2-nCM nCN-M L-n
n =0 ' ,

(B-1)

With j = M +L and r(n) =1-n j j, the first and second moments and the variance of r (given N,
M, and L) are easily determined as

I1T = E[r] = E(l-njj)Pn ;
n

(B-2)
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E[r2] = ~(1-n/j)2Pn ;
n
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(B-3)

(B-4)

Fig. 8 shows IJ.r and Ur as functions of M, for M =L =j /2. The lower dashed line shows the

approximate formula for a given in II(C), and the diamonds represent points extracted from the

simulation. Although it is cannot be seen from Fig. 8, the table below shows that given j (which

in this case is 90), J1T and U r are not very sensitive even to fairly large imbalances between M and

L (and large imbalances are very unlikely), and that interchanging M and L leaves IJ.r and Ur

unaffected.

M L J1T Ur

45 45 0.915 0.0252
40 50 0.916 0.0251
50 40 0.916 0.0251
35 55 0.919 0.0246
55 35 0.919 0.0246
30 60 0.924 0.0238
60 30 0.924 0.0238
25 65 0.931 0.0226
65 25 0.931 0.0226

Since Ur is very small relative to J1T (about 3%), it is clear that given j, r can be treated as a

constant for practical purposes, and hence can be modeled as a function of j as shown in Fig. 8.

Further, it is clear from Fig. 8 that the approximate formula in II(C) gives a very close

representation of that functional relationship, and can be used to represent the model parameter

CXj, and that the "tuned" approximation gives nearly the same results as the "exact" calculation

given here, over the relevant range of j.


